Division of labour in microorganisms: an evolutionary perspective

The division of labour, whereby individuals within a group specialize in certain tasks, has long been appreciated as central to the evolution of complex biological societies. In recent years, several examples of division of labour in microorganisms have arisen, which suggests that this strategy may also be important in microbial species. In this Opinion article, we explore the set of conditions that define division of labour and propose that cooperation between different phenotypes is a defining feature of division of labour. Furthermore, we discuss how clarifying what constitutes division of labour highlights key evolutionary questions, including what form division of labour takes and why it is favoured by natural selection.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 12 print issues and online access

206,07 € per year

only 17,17 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

The evolution of mechanisms to produce phenotypic heterogeneity in microorganisms

Article Open access 25 January 2022

Resource sharing is sufficient for the emergence of division of labour

Article Open access 24 November 2022

Ten recent insights for our understanding of cooperation

Article 28 January 2021

References

  1. Lewis, K. Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol.5, 48–56 (2006). PubMedGoogle Scholar
  2. Veening, J.-W., Smits, W. K. & Kuipers, O. P. Bistability, epigenetics, and bet-hedging in bacteria. Annu. Rev. Microbiol.62, 193–210 (2008). CASPubMedGoogle Scholar
  3. Ackermann, M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol.13, 497–508 (2015). CASPubMedGoogle Scholar
  4. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science305, 1622–1625 (2004). CASPubMedGoogle Scholar
  5. Veening, J.-W. et al. Transient heterogeneity in extracellular protease production by Bacillus subtilis. Mol. Syst. Biol.4, 1–15 (2008). Google Scholar
  6. Claessen, D., Rozen, D. E., Kuipers, O. P., Søgaard-Andersen, L. & van Wezel, G. P. Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nat. Rev. Microbiol.12, 115–124 (2014). CASPubMedGoogle Scholar
  7. van Gestel, J., Vlamakis, H. & Kolter, R. in Microbial Biofilms 2nd edn (eds Ghannoum, M., Parsek, M., Whiteley, M. & Mukherjee, P.) 67–97 (ASM press, 2015). Google Scholar
  8. Ghoul, M., Griffin, A. S. & West, S. A. Toward an evolutionary definition of cheating. Evolution68, 318–331 (2014). PubMedGoogle Scholar
  9. Voelz, K. et al. 'Division of labour' in response to host oxidative burst drives a fatal Cryptococcus gattii outbreak. Nat. Commun.5, 5194 (2014). CASPubMedPubMed CentralGoogle Scholar
  10. Maynard Smith, J. & Szathmáry, E. The Major Transitions in Evolution (Oxford Univ. Press, 1998). Google Scholar
  11. Bourke, A. F. G. Principles of Social Evolution (Oxford Univ. Press, 2011). Google Scholar
  12. West, S. A., Fisher, R. M., Gardner, A. & Kiers, E. T. Major evolutionary transitions in individuality. Proc. Natl Acad. Sci. USA112, 10112–10119 (2015). CASPubMedGoogle Scholar
  13. Crespi, B. J. & Yanega, D. The definition of eusociality. Behav. Ecol.6, 109–115 (1995). Google Scholar
  14. West, S. A., Griffin, A. S. & Gardner, A. Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. J. Evol. Biol.20, 415–432 (2007). CASPubMedGoogle Scholar
  15. Tinbergen, N. On aims and methods of Ethology. Zeitschrift Tierpsychol.20, 410–433 (1963). Google Scholar
  16. Flores, E. & Herrero, A. Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat. Rev. Microbiol.8, 39–50 (2009). Google Scholar
  17. Davidson, C. J. & Surette, M. G. Individuality in bacteria. Annu. Rev. Genet.42, 253–268 (2008). CASPubMedGoogle Scholar
  18. West, S. A., Griffin, A. S., Gardner, A. & Diggle, S. P. Social evolution theory for microorganisms. Nat. Rev. Microbiol.4, 597–607 (2006). CASPubMedGoogle Scholar
  19. Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol.7, 1–16 (1964). CASPubMedGoogle Scholar
  20. Grafen, A. Optimization of inclusive fitness. J. Theor. Biol.238, 541–563 (2006). PubMedGoogle Scholar
  21. West, S. A. & Gardner, A. Adaptation and inclusive fitness review. Curr. Biol.23, R577–R584 (2013). CASPubMedGoogle Scholar
  22. Ackermann, M. et al. Self-destructive cooperation mediated by phenotypic noise. Nature454, 987–990 (2008). CASPubMedGoogle Scholar
  23. Diard, M. et al. Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature494, 353–356 (2013). CASPubMedGoogle Scholar
  24. Strassmann, J. E., Zhu, Y. & Queller, D. C. Altruism and social cheating in the social amoeba Dictyostelium discoideum. Nature408, 965–967 (2000). CASPubMedGoogle Scholar
  25. Velicer, G. J., Kroos, L. & Lenski, R. E. Developmental cheating in the social bacterium Myxococcus xanthus. Nature404, 598–601 (2000). CASPubMedGoogle Scholar
  26. Rainey, P. B. & Travisano, M. Adaptive radiation in a heterogeneous environment. Nature394, 69–72 (1998). CASPubMedGoogle Scholar
  27. Kim, W., Levy, S. B. & Foster, K. R. Rapid radiation in bacteria leads to a division of labor. Nat. Commun.7, 10508 (2016). CASPubMedPubMed CentralGoogle Scholar
  28. Griffin, A. S., West, S. A. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature430, 1024–1027 (2004). CASPubMedGoogle Scholar
  29. Jiricny, N. et al. Fitness correlates with the extent of cheating in a bacterium. J. Evol. Biol.23, 738–747 (2010). CASPubMedGoogle Scholar
  30. Andersen, S. B., Marvig, R. L., Molin, S., Krogh Johansen, H. & Griffin, A. S. Long-term social dynamics drive loss of function in pathogenic bacteria. Proc. Natl Acad. Sci. USA112, 10756–10761 (2015). CASPubMedGoogle Scholar
  31. Diggle, S. P., West, S. A., Griffin, A. S. & Campbell, G. S. Cooperation and conflict in quorum-sensing bacterial populations. Nature450, 411–414 (2007). CASPubMedGoogle Scholar
  32. West, S. A., Winzer, K., Gardner, A. & Diggle, S. P. Quorum sensing and the confusion about diffusion. Trends Microbiol.20, 586–594 (2012). CASPubMedGoogle Scholar
  33. Ghoul, M., West, S. A., Diggle, S. P. & Griffin, A. S. An experimental test of whether cheating is context dependent. J. Evol. Biol.27, 551–556 (2014). CASPubMedGoogle Scholar
  34. van Gestel, J., Vlamakis, H. & Kolter, R. From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate. PLoS Biol.13, e1002141 (2015). PubMedPubMed CentralGoogle Scholar
  35. Michod, R. E. Evolution of individuality during the transition from unicellular to multicellular life. Proc. Natl Acad. Sci. USA104, 8613–8618 (2007). CASPubMedGoogle Scholar
  36. Michod, R. E., Viossat, Y., Solari, C. A. & Hurand, M. Life-history evolution and the origin of multicellularity. J. Theor. Biol.239, 257–272 (2006). PubMedGoogle Scholar
  37. Ispolatov, I., Ackermann, M. & Doebeli, M. Division of labour and the evolution of multicellularity. Proc. Biol. Sci.279, 1768–1776 (2012). PubMedGoogle Scholar
  38. Gavrilets, S. Rapid transition towards the division of labor via evolution of developmental plasticity. PLoS Comput. Biol.6, e1000805 (2010). PubMedPubMed CentralGoogle Scholar
  39. Oster, G. F. & Wilson, E. O. Caste and Ecology in the Social Insects (Princeton Univ. Press, 1978). Google Scholar
  40. Charnov, E. L. The Theory of Sex Allocation (Princeton Univ. Press, 1982). Google Scholar
  41. Koufopanou, V. & Bell, G. Soma and germ: an experimental approach using Volvox. Proc. R. Soc. B: Biol. Sci.254, 107–113 (1993). Google Scholar
  42. Rossetti, V. et al. The evolutionary path to terminal differentiation and division of labor in cyanobacteria. J. Theor. Biol.262, 23–34 (2010). PubMedGoogle Scholar
  43. Wilson, E. O. Ergonomics of caste in social insects. Am. Nat.102, 41–66 (1968). Google Scholar
  44. Koufopanou, V. The evolution of soma in the Volvocales. Am. Nat.143, 907–931 (1994). Google Scholar
  45. Herron, M. D., Hackett, J. D., Aylward, F. O. & Michod, R. E. Triassic origin and early radiation of multicellular volvocine algae. Proc. Natl Acad. Sci. USA106, 3254–3258 (2009). CASPubMedGoogle Scholar
  46. Solari, C. A., Kessler, J. O. & Michod, R. E. A. Hydrodynamics approach to the evolution of multicellularity: flagellar motility and germ–soma differentiation in volvocalean green algae. Am. Nat.167, 537–554 (2006). PubMedGoogle Scholar
  47. Solari, C. A., Ganguly, S., Kessler, J. O., Michod, R. E. & Goldstein, R. E. Multicellularity and the functional interdependence of motility and molecular transport. Proc. Natl Acad. Sci. USA103, 1353–1358 (2006). CASPubMedGoogle Scholar
  48. Wolf, J. B. et al. Fitness trade-offs result in the illusion of social success. Curr. Biol.25, 1086–1090 (2015). CASPubMedPubMed CentralGoogle Scholar
  49. Gilbert, O. M., Foster, K. R., Mehdiabadi, N. J., Strassmann, J. E. & Queller, D. C. High relatedness maintains multicellular cooperation in a social amoeba by controlling cheater mutants. Proc. Natl Acad. Sci. USA104, 8913–8917 (2007). CASPubMedGoogle Scholar
  50. Mehdiabadi, N. J. et al. Kin preference in a social microbe. Nature442, 881–882 (2006). CASPubMedGoogle Scholar
  51. Kuzdzal-Fick, J. J., Queller, D. C., Fox, S. A. & Strassmann, J. E. High relatedness is necessary and sufficient to maintain multicellularity in Dictyostelium. Science334, 1548–1551 (2011). CASPubMedGoogle Scholar
  52. Bastiaans, E., Debets, A. J. M. & Aanen, D. K. Experimental evolution reveals that high relatedness protects multicellular cooperation from cheaters. Nat. Commun.7, 1–10 (2016). Google Scholar
  53. Fisher, R. M., Cornwallis, C. K. & West, S. A. Group formation, relatedness, and the evolution of multicellularity. Curr. Biol.23, 1120–1125 (2013). CASPubMedGoogle Scholar
  54. Maynard Smith, J. & Price, G. R. The logic of animal conflict. Nature246, 15–18 (1973). Google Scholar
  55. Dawkins, R. The Selfish Gene (Oxford Univ. Press, 1976). Google Scholar
  56. Bonner, J. T. Cellular Slime Molds (Princeton Univ. Press, 1967). Google Scholar
  57. Shelton, D. E., Desnitskiy, A. G. & Michod, R. E. Distributions of reproductive and somatic cell numbers in diverse Volvox (Chlorophyta) species. Evol. Ecol. Res.14, 707–727 (2012). PubMedPubMed CentralGoogle Scholar
  58. Bell, G. & Mooers, A. O. Size and complexity among multicellular organisms. Biol. J. Linnean Soc.60, 345–363 (1997). Google Scholar
  59. Frank, S. A. Host–symbiont conflict over the mixing of symbiotic lineages. Proc. Biol. Sci.263, 339–344 (1996). CASPubMedGoogle Scholar
  60. Gore, J., Youk, H. & van Oudenaarden, A. Snowdrift game dynamics and facultative cheating in yeast. Nature459, 253–256 (2009). CASPubMedPubMed CentralGoogle Scholar
  61. Ross-Gillespie, A., Gardner, A., West, S. A. & Griffin, A. S. Frequency dependence and cooperation: theory and a test with bacteria. Am. Nat.170, 331–342 (2007). PubMedGoogle Scholar
  62. Haig, D. Weismann rules! OK? Epigenetics and the Lamarckian temptation. Biol. Philos.22, 415–428 (2006). Google Scholar
  63. Maynard Smith, J. Group selection. Q. Rev. Biol.51, 277–283 (1976). Google Scholar
  64. Gordon, D. M. From division of labor to the collective behavior of social insects. Behav. Ecol. Sociobiol.70, 1101–1108 (2015). PubMedPubMed CentralGoogle Scholar
  65. Rainey, P. B. & Kerr, B. Cheats as first propagules: a new hypothesis for the evolution of individuality during the transition from single cells to multicellularity. Bioessays32, 872–880 (2010). PubMedGoogle Scholar
  66. Hammerschmidt, K., Rose, C. J., Kerr, B. & Rainey, P. B. Life cycles, fitness decoupling and the evolution of multicellularity. Nature515, 75–79 (2015). Google Scholar
  67. Veening, J.-W. et al. Bet-hedging and epigenetic inheritance in bacterial cell development. Proc. Natl Acad. Sci. USA105, 4393–4398 (2008). CASPubMedGoogle Scholar
  68. Kirk, D. L. Asymmetric division, cell size and germ–soma specification in Volvox. Semin. Dev. Biol.6, 369–379 (1995). Google Scholar
  69. Schmitt, R. Differentiation of germinal and somatic cells in Volvox carteri. Curr. Opin. Microbiol.6, 608–613 (2003). CASPubMedGoogle Scholar
  70. Nedelcu, A. M. & Michod, R. E. The evolutionary origin of an altruistic gene. Mol. Biol. Evol.23, 1460–1464 (2006). CASPubMedGoogle Scholar
  71. Hanschen, E. R., Ferris, P. J. & Michod, R. E. Early evolution of the genetic basis for soma in the Volvocaceae. Evolution68, 2014–2025 (2014). CASPubMedGoogle Scholar
  72. Fisher, R. A. The Genetical Theory of Natural Selection (Clarendon, 1930). Google Scholar
  73. Grafen, A. The formal Darwinism project: a mid-term report. J. Evol. Biol.20, 1243–1254 (2007). CASPubMedGoogle Scholar
  74. Leigh, E. G. When does the good of the group override the advantage of the individual? Proc. Natl Acad. Sci. USA80, 2985–2989 (1983). CASPubMedGoogle Scholar
  75. Gardner, A. & Grafen, A. Capturing the superorganism: a formal theory of group adaptation. J. Evol. Biol.22, 659–671 (2009). CASPubMedGoogle Scholar
  76. Shelton, D. E. & Michod, R. E. Philosophical foundations for the hierarchy of life. J. Evol. Biol.25, 391 (2010). Google Scholar
  77. Sturm, A. et al. The cost of virulence: retarded growth of Salmonella Typhimurium cells expressing type III secretion system 1. PLoS Pathog.7, e1002143 (2011). CASPubMedPubMed CentralGoogle Scholar

Acknowledgements

The authors thank K. Boomsma, A. P. Escudero, K. Foster, A. Gardner, M. Ghoul, J. Gore, A. Griffin, R. May, J. Strassmann, D. Unterweger and J. van Gestel for very useful discussions. The authors also thank M. Ackermann, R. May, R. Michod and J.-W. Veening for kindly providing images. G.A.C was funded by the Engineering and Physical Sciences Research Council (EPSRC).

Author information

Authors and Affiliations

  1. Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK Stuart A. West & Guy A. Cooper
  1. Stuart A. West